

Welcome to GenieACS’s documentation!

Installation

	Installation Guide

	Environment Variables

Administration

	Provisions

	Virtual Parameters

	Administration FAQ

Integration

	Extensions

	API Reference

Security

	HTTPS

	CPE Authentication

	Roles and Permissions

Installation Guide

This guide is for installing GenieACS on a single server on any Linux distro
that uses systemd as its init system.

The various GenieACS services are independent of each other and may be
installed on different servers. You may also run multiple instances of each in
a load-balancing/failover setup.

Attention

For production deployments make sure to configure TLS and change
UI_JWT_SECRET to a unique and secure string. Refer to HTTPS
section for how to enable TLS to encrypt traffic.

Prerequisites

Node.js

GenieACS requires Node.js 12.13 and up. Refer to https://nodejs.org/ for
instructions.

MongoDB

GenieACS requires MongoDB 3.6 and up. Refer to https://www.mongodb.com/ for
instructions.

Install GenieACS

Installing from NPM:

sudo npm install -g genieacs@1.2.12

Installing from source

If you prefer installing from source, such as when running a GenieACS copy
with custom patches, refer to README.md file in the source package. Adjust
the next steps below accordingly.

Configure systemd

Create a system user to run GenieACS daemons

sudo useradd --system --no-create-home --user-group genieacs

Create directory to save extensions and environment file

We’ll use /opt/genieacs/ext/ directory to store extension scripts (if any).

mkdir /opt/genieacs
mkdir /opt/genieacs/ext
chown genieacs:genieacs /opt/genieacs/ext

Create the file /opt/genieacs/genieacs.env to hold our configuration
options which we pass to GenieACS as environment variables. See
Environment Variables section for a list of all available
configuration options.

GENIEACS_CWMP_ACCESS_LOG_FILE=/var/log/genieacs/genieacs-cwmp-access.log
GENIEACS_NBI_ACCESS_LOG_FILE=/var/log/genieacs/genieacs-nbi-access.log
GENIEACS_FS_ACCESS_LOG_FILE=/var/log/genieacs/genieacs-fs-access.log
GENIEACS_UI_ACCESS_LOG_FILE=/var/log/genieacs/genieacs-ui-access.log
GENIEACS_DEBUG_FILE=/var/log/genieacs/genieacs-debug.yaml
NODE_OPTIONS=--enable-source-maps
GENIEACS_EXT_DIR=/opt/genieacs/ext

Generate a secure JWT secret and append to /opt/genieacs/genieacs.env:

node -e "console.log(\"GENIEACS_UI_JWT_SECRET=\" + require('crypto').randomBytes(128).toString('hex'))" >> /opt/genieacs/genieacs.env

Set file ownership and permissions:

sudo chown genieacs:genieacs /opt/genieacs/genieacs.env
sudo chmod 600 /opt/genieacs/genieacs.env

Create logs directory

mkdir /var/log/genieacs
chown genieacs:genieacs /var/log/genieacs

Create systemd unit files

Create a systemd unit file for each of the four GenieACS services. Note that
we’re using EnvironmentFile directive to read the environment variables from
the file we created earlier.

Each service has two streams of logs: access log and process log. Access logs
are configured here to be dumped in a log file under
/var/log/genieacs/ while process logs go to journald. Use
journalctl command to view process logs.

Attention

If the command systemctl edit --force --full fails, you can
create the unit file manually.

	Run the following command to create genieacs-cwmp service:

sudo systemctl edit --force --full genieacs-cwmp

Then paste the following in the editor and save:

[Unit]
Description=GenieACS CWMP
After=network.target

[Service]
User=genieacs
EnvironmentFile=/opt/genieacs/genieacs.env
ExecStart=/usr/bin/genieacs-cwmp

[Install]
WantedBy=default.target

	Run the following command to create genieacs-nbi service:

sudo systemctl edit --force --full genieacs-nbi

Then paste the following in the editor and save:

[Unit]
Description=GenieACS NBI
After=network.target

[Service]
User=genieacs
EnvironmentFile=/opt/genieacs/genieacs.env
ExecStart=/usr/bin/genieacs-nbi

[Install]
WantedBy=default.target

	Run the following command to create genieacs-fs service:

sudo systemctl edit --force --full genieacs-fs

Then paste the following in the editor and save:

[Unit]
Description=GenieACS FS
After=network.target

[Service]
User=genieacs
EnvironmentFile=/opt/genieacs/genieacs.env
ExecStart=/usr/bin/genieacs-fs

[Install]
WantedBy=default.target

	Run the following command to create genieacs-ui service:

sudo systemctl edit --force --full genieacs-ui

Then paste the following in the editor and save:

[Unit]
Description=GenieACS UI
After=network.target

[Service]
User=genieacs
EnvironmentFile=/opt/genieacs/genieacs.env
ExecStart=/usr/bin/genieacs-ui

[Install]
WantedBy=default.target

Configure log file rotation using logrotate

Save the following as /etc/logrotate.d/genieacs

/var/log/genieacs/*.log /var/log/genieacs/*.yaml {
 daily
 rotate 30
 compress
 delaycompress
 dateext
}

Enable and start services

sudo systemctl enable genieacs-cwmp
sudo systemctl start genieacs-cwmp
sudo systemctl status genieacs-cwmp

sudo systemctl enable genieacs-nbi
sudo systemctl start genieacs-nbi
sudo systemctl status genieacs-nbi

sudo systemctl enable genieacs-fs
sudo systemctl start genieacs-fs
sudo systemctl status genieacs-fs

sudo systemctl enable genieacs-ui
sudo systemctl start genieacs-ui
sudo systemctl status genieacs-ui

Review the status message for each to verify that the services are running
successfully.

Environment Variables

Configuring GenieACS services can be done through the following environment
variables:

Attention

All GenieACS environment variables must be prefixed with GENIEACS_.

	MONGODB_CONNECTION_URL
	MongoDB connection string.

Default: mongodb://127.0.0.1/genieacs

	EXT_DIR
	The directory from which to look up extension scripts.

Default: <installation dir>/config/ext

	EXT_TIMEOUT
	Timeout (in milliseconds) to allow for calls to extensions to return a
response.

Default: 3000

	DEBUG_FILE
	File to dump CPE debug log.

Default: unset

	DEBUG_FORMAT
	Debug log format. Valid values are ‘yaml’ and ‘json’.

Default: yaml

	LOG_FORMAT
	The format used for the log entries in CWMP_LOG_FILE, NBI_LOG_FILE,
FS_LOG_FILE, and UI_LOG_FILE. Possible values are simple and
json.

Default: simple

	ACCESS_LOG_FORMAT
	The format used for the log entries in CWMP_ACCESS_LOG_FILE,
NBI_ACCESS_LOG_FILE, FS_ACCESS_LOG_FILE, and UI_ACCESS_LOG_FILE.
Possible values are simple and json.

Default: simple

	CWMP_WORKER_PROCESSES
	The number of worker processes to spawn for genieacs-cwmp. A value of 0 means
as many as there are CPU cores available.

Default: 0

	CWMP_PORT
	The TCP port that genieacs-cwmp listens on.

Default: 7547

	CWMP_INTERFACE
	The network interface that genieacs-cwmp binds to.

Default: ::

	CWMP_SSL_CERT
	Path to certificate file. If omitted, non-secure HTTP will be used.

Default: unset

	CWMP_SSL_KEY
	Path to certificate key file. If omitted, non-secure HTTP will be used.

Default: unset

	CWMP_LOG_FILE
	File to log process related events for genieacs-cwmp. If omitted, logs will
go to stderr.

Default: unset

	CWMP_ACCESS_LOG_FILE
	File to log incoming requests for genieacs-cwmp. If omitted, logs will go to
stdout.

Default: unset

	NBI_WORKER_PROCESSES
	The number of worker processes to spawn for genieacs-nbi. A value of 0 means
as many as there are CPU cores available.

Default: 0

	NBI_PORT
	The TCP port that genieacs-nbi listens on.

Default: 7557

	NBI_INTERFACE
	The network interface that genieacs-nbi binds to.

Default: ::

	NBI_SSL_CERT
	Path to certificate file. If omitted, non-secure HTTP will be used.

Default: unset

	NBI_SSL_KEY
	Path to certificate key file. If omitted, non-secure HTTP will be used.

Default: unset

	NBI_LOG_FILE
	File to log process related events for genieacs-nbi. If omitted, logs will go
to stderr.

Default: unset

	NBI_ACCESS_LOG_FILE
	File to log incoming requests for genieacs-nbi. If omitted, logs will go to
stdout.

Default: unset

	FS_WORKER_PROCESSES
	The number of worker processes to spawn for genieacs-fs. A value of 0 means
as many as there are CPU cores available.

Default: 0

	FS_PORT
	The TCP port that genieacs-fs listens on.

Default: 7567

	FS_INTERFACE
	The network interface that genieacs-fs binds to.

Default: ::

	FS_SSL_CERT
	Path to certificate file. If omitted, non-secure HTTP will be used.

Default: unset

	FS_SSL_KEY
	Path to certificate key file. If omitted, non-secure HTTP will be used.

Default: unset

	FS_LOG_FILE
	File to log process related events for genieacs-fs. If omitted, logs will go
to stderr.

Default: unset

	FS_ACCESS_LOG_FILE
	File to log incoming requests for genieacs-fs. If omitted, logs will go to
stdout.

Default: unset

	FS_URL_PREFIX
	The URL prefix (e.g. ‘https://example.com:7567/’) to use when generating the
file URL for TR-069 Download requests. Set this if genieacs-fs and
genieacs-cwmp are behind a proxy or running on different servers.

Default: auto generated based on the hostname from the ACS URL, FS_PORT
config, and whether or not SSL is enabled for genieacs-fs.

	UI_WORKER_PROCESSES
	The number of worker processes to spawn for genieacs-ui. A value of 0 means
as many as there are CPU cores available.

Default: 0

	UI_PORT
	The TCP port that genieacs-ui listens on.

Default: 3000

	UI_INTERFACE
	The network interface that genieacs-ui binds to.

Default: ::

	UI_SSL_CERT
	Path to certificate file. If omitted, non-secure HTTP will be used.

Default: unset

	UI_SSL_KEY
	Path to certificate key file. If omitted, non-secure HTTP will be used.

Default: unset

	UI_LOG_FILE
	File to log process related events for genieacs-ui. If omitted, logs will go
to stderr.

Default: unset

	UI_ACCESS_LOG_FILE
	File to log incoming requests for genieacs-ui. If omitted, logs will go to
stdout.

Default: unset

	UI_JWT_SECRET
	The key used for signing JWT tokens that are stored in browser cookies. The
string can be up to 64 characters in length.

Default: unset

Provisions

A Provision is a piece of JavaScript code that is executed on the server on a
per-device basis. It enables implementing complex provisioning scenarios and
other operations such as automated firmware upgrade rollout. Apart from a few
special functions, the script is essentially a standard ES6 code executed in
strict mode.

Provisions are mapped to devices using presets. Note that the added performance
overhead when using Provisions as opposed to simple preset configuration
entries is relatively small. Anything that can be done via preset
configurations can be done using a Provision script. In fact, the now
deprecated configuration format is still supported primarily for backward
compatibility and it is recommended to use Provision scripts for all
configuration.

When assigning a Provision script to a preset, you may pass arguments to the
script. The arguments can be accessed from the script through the global
args variable.

Note

Provision scripts may get executed multiple times in a given session.
Although all data model-mutating operations are idempotent, a script as a
whole may not be. It is, therefore, necessary to repeatedly run the script
until there are no more side effects and a stable state is reached.

Built-in functions

declare(path, timestamps, values)

This function is for declaring parameter values to be set, as well as specify
constraints on how recent you’d like the parameter value (or other attributes)
to have been refreshed from the device. If the given timestamp is lower than
the timestamp of the last refresh from the device, then this function will
return the last known value. Otherwise, the value will be fetched from the
device before being returned to the caller.

The timestamp argument is an object where the key is the attribute name (e.g.
value, object, writable, path) and the value is an integer
representing a Unix timestamp.

The values argument is an object similar to the timestamp argument but its
property values being the parameter values to be set.

The possible attributes in ‘timestamps’ and ‘values’ arguments are:

	value: a [<value>, <type>] pair

This attribute is not available for objects or object instances. If the value
is not a [<value>, <type>] array then it’ll assumed to be a value without a
type and therefore the type will be inferred from the parameter’s type.

	writable: boolean

The meaning of this attribute can vary depending on the type of the parameter.
In the case of regular parameters, it indicates if its value is writable. In
the case of objects, it’s whether or not it’s possible to add new object
instances. In the case of object instances, it indicates whether or not this
instance can be deleted.

	object: boolean

True if this is an object or object instance, false otherwise.

	path: string

This attribute is special in that it’s not a parameter attribute per se, but it
refers to the presence of parameters matching the given path. For example,
given the following wildcard path:

InternetGatewayDevice.LANDevice.1.Hosts.Host.*.MACAddress

Using a recent timestamp for path in declare() will result in a sync with
the device to rediscover all Host instances (Host.*). The path attribute
can also be used to create or delete object instances as described in
Path format section.

The return value of declare() is an iterator to access parameters that
match the given path. Each item in the iterator has the attribute ‘path’ in
addition to any other attribute given in the declare() call. The iterator
object itself has convenience attribute accessors which come in handy when
you’re expecting a single parameter (e.g. when path does not contain wildcards
or aliases).

// Example: Setting the SSID as the last 6 characters of the serial number
let serial = declare("Device.DeviceInfo.SerialNumber", {value: 1});
declare("Device.LANDevice.1.WLANConfiguration.1.SSID", null, {value: serial.value[0]});

clear(path, timestamp)

This function invalidates the database copy of parameters (and their child
parameters) that match the given path and have a last refresh timestamp that is
less than the given timestamp. The most obvious use for this function is to
invalidate the database copy of the entire data model after the device has been
factory reset:

// Example: Clear cached device data model Note
// Make sure to apply only on "0 BOOTSTRAP" event
clear("Device", Date.now());
clear("InternetGatewayDevice", Date.now());

commit()

This function commits the pending declarations and performs any necessary sync
with the device. It’s usually not required to call this function as it called
implicitly at the end of the script and when accessing any property of the
promise-like object returned by the declare() function. Calling this
explicitly is only necessary if you want to control the order in which
parameters are configured.

ext(file, function, arg1, arg2, ...)

Execute an extension script and return the result. The first argument is the
script filename while second argument is the function name within that script.
Any remaining arguments will be passed to that function. See Extensions
for more details.

log(message)

Prints out a string in genieacs-cwmp’s access log. It’s meant to be used for
debugging. Note that you may see multiple log entries as the script can be
executed multiple times in a session. See this FAQ.

Path format

A parameter path may contain a wildcard (*) or an alias filter
([name:value]). A wildcard segment in a parameter path will apply the
declared configuration to zero or more parameters that match the given path
where the wildcard segment can be anything.

An alias filter is like a wildcard, but additionally performs filtering on the
child parameters based on the key-value pairs provided. For example, the
following path:

Device.WANDevice.1.WANConnectionDevice.1.WANIPConnection.[AddressingType:DHCP].ExternalIPAddress

will return a list of ExternalIPAddress parameters (0 or more) where the
sibling parameter AddressingType is assigned the value “DHCP”.

This can be useful when the exact instance numbers may be different from one
device to another. It is possible to use more than one key-value pair in the
alias filter. It’s also possible to use multiple filters or use a combination
of filters and wildcards.

Creating/deleting object instances

Given the declarative nature of provisions, we cannot explicitly tell the
device to create or delete an instance under a given object. Instead, we
specify the number of instances we want there to be, and based on that GenieACS
will determine whether or not it needs to create or delete instances. For
example, the following declaration will ensure we have one and only one
WANIPConnection object:

// Example: Ensure we have one and only one WANIPConnection object
declare("InternetGatewayDevice.WANDevice.1.WANConnectionDevice.1.WANIPConnection.*", null, {path: 1});

Note the wildcard at the end of the parameter path.

It is also possible to use alias filters as the last path segment which will
ensure that the declared number of instances is satisfied given the alias
filter:

// Ensure that *all* other instances are deleted
declare("InternetGatewayDevice.X_BROADCOM_COM_IPAddrAccCtrl.X_BROADCOM_COM_IPAddrAccCtrlListCfg.[]", null, {path: 0});

// Add the two entries we care about
declare("InternetGatewayDevice.X_BROADCOM_COM_IPAddrAccCtrl.X_BROADCOM_COM_IPAddrAccCtrlListCfg.[SourceIPAddress:192.168.1.0,SourceNetMask:255.255.255.0]", {path: now}, {path: 1});
declare("InternetGatewayDevice.X_BROADCOM_COM_IPAddrAccCtrl.X_BROADCOM_COM_IPAddrAccCtrlListCfg.[SourceIPAddress:172.16.12.0,SourceNetMask:255.255.0.0]", {path: now}, {path: 1});

Special GenieACS parameters

In addition to the parameters exposed in the device’s data model through
TR-069, GenieACS has its own set of special parameters:

DeviceID

This parameter sub-tree includes the following read-only parameters:

	DeviceID.ID

	DeviceID.SerialNumber

	DeviceID.ProductClass

	DeviceID.OUI

	DeviceID.Manufacturer

Tags

The Tags root parameter is used to expose device tags in the data model.
Tags appear as child parameters that are writable and have boolean value.
Setting a tag to false will delete that tag, and setting the value of a
non-existing tag parameter to true will create it.

// Example: Remove "tag1", add "tag2", and read "tag3"
declare("Tags.tag1", null, {value: false});
declare("Tags.tag2", null, {value: true});
let tag3 = declare("Tags.tag3", {value: 1});

Reboot

The Reboot root parameter hold the timestamp of the last reboot command.
The parameter value is writable and declaring a timestamp value that is larger
than the current value will trigger a reboot.

// Example: Reboot the device only if it hasn't been rebooted in the past 300 seconds
declare("Reboot", null, {value: Date.now() - (300 * 1000)});

FactoryReset

Works like Reboot parameter but for factory reset.

// Example: Default the device to factory settings
declare("FactoryReset", null, {value: Date.now()});

Downloads

The Downloads sub-tree holds information about the last download
command(s). A download command is represented as an instance (e.g.
Downloads.1) containing parameters such as Download (timestamp),
LastFileType, LastFileName. The parameters FileType, FileName,
TargetFileName and Download are writable and can be used to trigger a
new download.

declare("Downloads.[FileType:1 Firmware Upgrade Image]", {path: 1}, {path: 1});
declare("Downloads.[FileType:1 Firmware Upgrade Image].FileName", {value: 1}, {value: "firmware-2017.01.tar"});
declare("Downloads.[FileType:1 Firmware Upgrade Image].Download", {value: 1}, {value: Date.now()});

Common file types are:

	1 Firmware Upgrade Image

	2 Web Content

	3 Vendor Configuration File

	4 Tone File

	5 Ringer File

Warning

Pushing a file to the device is often a service-interrupting operation. It’s
recommended to only trigger it on certain events such as 1 BOOT or during
a predetermined maintenance window).

After the CPE had finished downloading and applying the config file, it will
send a 7 TRANSFER COMPLETE event. You may use that to trigger a reboot
after the firmware image or configuration file had been applied.

Virtual Parameters

Virtual parameters are user-defined parameters whose values are generated using
a custom Javascript code. Virtual parameters behave just like regular
parameters and appear in the data model under VirtualParameters. path.
Virtual parameter names cannot contain a period (.).

The execution environment for virtual parameters is almost identical to that of
provisions. See Provisions for more details and examples. The only
differences between the scripts of provisions and virtual parameters are:

	You can’t pass custom arguments to virtual parameter scripts. Instead, the
variable args will hold the current vparam timestamps and values as well
as the declared timestamps and values. Like this:

// [<declared attr timestamps, declared attr values>, <current attr timestamps>, <current attr values>]
[{path: 1559849387191, value: 1559849387191}, {value: ["new val", "xsd:string"]}, {path: 1559840000000, value: 1559840000000}, {value: ["cur val", "xsd:string"]}]

	Virtual parameter scripts must return an object containing the attributes of
this parameter.

Note

Just like a regular parameter, creating a virtual parameter does not
automatically add it to the parameter list for a device. It needs to fetched
(manually or via a preset) before you can see it in the data model.

Examples

Unified MAC parameter across different device models

// Example: Unified MAC parameter across different device models
let m = "00:00:00:00:00:00";
let d = declare("Device.WANDevice.*.WANConnectionDevice.*.WANIPConnection.*.MACAddress", {value: Date.now()});
let igd = declare("InternetGatewayDevice.WANDevice.*.WANConnectionDevice.*.WANPPPConnection.*.MACAddress", {value: Date.now()});

if (d.size) {
 for (let p of d) {
 if (p.value[0]) {
 m = p.value[0];
 break;
 }
 }
}
else if (igd.size) {
 for (let p of igd) {
 if (p.value[0]) {
 m = p.value[0];
 break;
 }
 }
}

return {writable: false, value: [m, "xsd:string"]};

Expose an external value as a virtual parameter

// Example: Expose an external value as a virtual parameter
let serial = declare("DeviceID.SerialNumber", {value: 1});
if (args[1].value) {
 ext("example-ext", "set", serial.value[0], args[1].value[0]);
 return {writable: true, value: [args[1].value[0], "xsd:string"]};
}
else {
 let v = ext("example-ext", "get", serial.value[0]);
 return {writable: true, value: [v, "xsd:string"]};
}

Create an editable virtual parameter for WPA passphrase

// Example: Create an editable virtual parameter for WPA passphrase
let m = "";
if (args[1].value) {
 m = args[1].value[0];
 declare("Device.WiFi.AccessPoint.1.Security.KeyPassphrase", null, {value: m});
 declare("InternetGatewayDevice.LANDevice.1.WLANConfiguration.1.KeyPassphrase", null, {value: m});
}
else {
 let d = declare("Device.WiFi.AccessPoint.1.Security.KeyPassphrase", {value: Date.now()});
 let igd = declare("InternetGatewayDevice.LANDevice.1.WLANConfiguration.1.KeyPassphrase", {value: Date.now()});

 if (d.size) {
 m = d.value[0];
 }
 else if (igd.size) {
 m = igd.value[0];
 }
}

return {writable: true, value: [m, "xsd:string"]};

Administration FAQ

Duplicate log entries when using log() function

Because GenieACS uses a full fledged scripting language for device
configuration, the only way to guarantee that it has satisfied the ‘desired
state’ is by repeatedly executing the script until there’s no more
discrepancies with the current device state. Though it may seem like this will
cause duplicate requests going to the device, this isn’t actually the case
because device configuration are stated declaratively and that the scripts
themselves are pure functions in the context of a session (e.g. Date.now()
always returns the same value within the session).

To illustrate with an example, consider the following script:

log("Executing script");
declare("Device.param", null, {value: 1});
commit();
declare("Device.param", null, {value: 2});

This will set the value of the ‘Device.param’ to 1, then to 2. Then as the
script is run again the value is set back to 1 and so on. A stable state will
never be reached so GenieACS will execute the script a few times until it gives
up and throws a fault. This is an edge case that should be avoided. A more
typical case is where the script is run once or twice. Essentially if an
execution doesn’t result in any request to the CPE or a change in the data
model then a stable state is deemed to have been reached.

Configurations not pushed to device after factory reset

After a device is reset to its factory default state, the cached data model in
GenieACS’s database needs to be invalidated to force rediscovery. Ensure the
following lines are called on 0 BOOTSTRAP event:

const now = Date.now();

// Clear cached data model to force a refresh
clear("Device", now);
clear("InternetGatewayDevice", now);

Most device parameters are missing

For performance reasons (server, client, and network), GenieACS by default only
fetches parts of the data model that are necessary to satisfy the declarations
in your provision scripts. Create declarations for any parameters you need
fetched by default.

If you’re unsure and want to explore the available parameters exposed by the
device, refresh the root parameter (e.g. InternetGatewayDevice) from
GenieACS’s UI. You typically only need to do that one time for a given CPE
model.

Extensions

Given that Provisions and Virtual Parameters are executed in a
sandbox environment, it is not possible to interact with external sources or
execute any action that requires OS, file system, or network access. Extensions
exist to bridge that gap.

Extensions are fully-privileged Node.js modules and as such have access to
standard Node libraries and 3rd party packages. Functions exposed by the
extension can be called from Provision scripts using the ext() function. A
typical use case for extensions is fetching credentials from a database to have
that pushed to the device during provisioning.

By default, the extension JS code must be placed under config/ext
directory. You may need to create that directory if it doesn’t already exist.

The example extension below fetches data from an external REST API and returns
that to the caller:

// This is an example GenieACS extension to get the current latitude/longitude
// of the International Space Station. Why, you ask? Because why not.
// To install, copy this file to config/ext/iss.js.

"use strict";

const http = require("http");

let cache = null;
let cacheExpire = 0;

function latlong(args, callback) {
 if (Date.now() < cacheExpire) return callback(null, cache);

 http
 .get("http://api.open-notify.org/iss-now.json", (res) => {
 if (res.statusCode !== 200)
 return callback(
 new Error(`Request failed (status code: ${res.statusCode})`),
);

 let rawData = "";
 res.on("data", (chunk) => (rawData += chunk));

 res.on("end", () => {
 let pos = JSON.parse(rawData)["iss_position"];
 cache = [+pos["latitude"], +pos["longitude"]];
 cacheExpire = Date.now() + 10000;
 callback(null, cache);
 });
 })
 .on("error", (err) => {
 callback(err);
 });
}

exports.latlong = latlong;

To call this extension from a Provision or a Virtual Parameter script:

// The arguments "arg1" and "arg2" are passed to the latlong. Though they are
// unused in this particular example.
const res = ext("ext-sample", "latlong", "arg1", "arg2");
log(JSON.stringify(res));

API Reference

GenieACS exposes a rich RESTful API through its NBI component. This document
serves as a reference for the available APIs.

This API makes use of MongoDB’s query language in some of its endpoints. Refer
to MongoDB’s documentation for details.

Note

The examples below use curl command for simplicity and ease of testing.
Query parameters are URL-encoded, but the original pre-encoding values are
shown for reference. These examples assume genieacs-nbi is running locally
and listening on the default NBI port (7557).

Warning

A common pitfall is not properly percent-encoding special characters in the
device ID or query in the URL.

Endpoints

GET /<collection>/?query=<query>

Search for records in the database (e.g. devices, tasks, presets, files).
Returns a JSON representation of all items in the given collection that match
the search criteria.

collection: The data collection to search. Could be one of: tasks, devices,
presets, objects.

query: Search query. Refer to MongoDB queries for reference.

Examples

	Find a device by its ID:

query = {"_id": "202BC1-BM632w-000000"}

curl -i 'http://localhost:7557/devices/?query=%7B%22_id%22%3A%22202BC1-BM632w-000000%22%7D'

	Find a device by its MAC address:

query = {
 "InternetGatewayDevice.WANDevice.1.WANConnectionDevice.1.WANIPConnection.1.MACAddress": "20:2B:C1:E0:06:65"
}

curl -i 'http://localhost:7557/devices/?query=%7B%22InternetGatewayDevice.WANDevice.1.WANConnectionDevice.1.WANIPConnection.1.MACAddress%22%3A%2220:2B:C1:E0:06:65%22%7D'

	Search for devices that have not initiated an inform in the last 7 days.

query = {
 "_lastInform": {
 "$lt" : "2017-12-11 13:16:23 +0000"
 }
}

curl -i 'http://localhost:7557/devices/?query=%7B%22_lastInform%22%3A%7B%22%24lt%22%3A%222017-12-11%2013%3A16%3A23%20%2B0000%22%7D%7D'

	Show pending tasks for a given device:

query = {"device": "202BC1-BM632w-000000"}

curl -i 'http://localhost:7557/tasks/?query=%7B%22device%22%3A%22202BC1-BM632w-000000%22%7D'

	Return specific parameters for a given device:

query = {"_id": "202BC1-BM632w-000000"}

curl -i 'http://localhost:7557/devices?query=%7B%22_id%22%3A%22202BC1-BM632w-000000%22%7D&projection=InternetGatewayDevice.DeviceInfo.ModelName,InternetGatewayDevice.DeviceInfo.Manufacturer'

The projection URL param is a comma-separated list of the parameters to receive.

POST /devices/<device_id>/tasks?[connection_request]

Enqueue task(s) and optionally trigger a connection request to the device.
Refer to Tasks section for information about the task object format.
Returns status code 200 if the tasks have been successfully executed, and 202
if the tasks have been queued to be executed at the next inform.

device_id: The ID of the device.

connection_request: Indicates that a connection request will be triggered to
execute the tasks immediately. Otherwise, the tasks will be queued and be
processed at the next inform.

The response body is the task object as it is inserted in the database. The
object will include _id property which you can use to look up the task
later.

Examples

	Refresh all device parameters now:

curl -i 'http://localhost:7557/devices/202BC1-BM632w-000000/tasks?connection_request' \
-X POST \
--data '{"name": "refreshObject", "objectName": ""}'

	Change WiFi SSID and password:

{
 "name": "setParameterValues",
 "parameterValues": [
 ["InternetGatewayDevice.LANDevice.1.WLANConfiguration.1.SSID", "GenieACS", "xsd:string"],
 ["InternetGatewayDevice.LANDevice.1.WLANConfiguration.1.PreSharedKey.1.PreSharedKey", "hello world", "xsd:string"]
]
}

curl -i 'http://localhost:7557/devices/202BC1-BM632w-000000/tasks?connection_request' \
-X POST \
--data '{"name":"setParameterValues", "parameterValues": [["InternetGatewayDevice.LANDevice.1.WLANConfiguration.1.SSID", "GenieACS", "xsd:string"],["InternetGatewayDevice.LANDevice.1.WLANConfiguration.1.PreSharedKey.1.PreSharedKey", "hello world", "xsd:string"]]}'

POST /tasks/<task_id>/retry

Retry a faulty task at the next inform.

task_id: The ID of the task as returned by ‘GET /tasks’ request.

Example

curl -i 'http://localhost:7557/tasks/5403908ef28ea3a25c138adc/retry' -X POST

DELETE /tasks/<task_id>

Delete the given task.

task_id: The ID of the task as returned by ‘GET /tasks’ request.

Example

curl -i 'http://localhost:7557/tasks/5403908ef28ea3a25c138adc' -X DELETE

DELETE /faults/<fault_id>

Delete the given fault.

fault_id: The ID of the fault as returned by ‘GET /faults’ request. The ID
format is “<device_id>:<channel>”.

Example

curl -i 'http://localhost:7557/faults/202BC1-BM632w-000000:default' -X DELETE

DELETE /devices/<device_id>

Delete the given device from the database.

Example

curl -X DELETE -i 'http://localhost:7557/devices/202BC1-BM632w-000001'

Note

Note that the device will be registered again when/if it contacts the ACS
again (e.g. on the next periodic inform).

POST /devices/<device_id>/tags/<tag>

Assign a tag to a device. Has no effect if such tag already exists.

device_id: The ID of the device.

tag: The tag to be assigned.

Example

Assign the tag “testing” to a device:

curl -i 'http://localhost:7557/devices/202BC1-BM632w-000000/tags/testing' -X POST

DELETE /devices/<device_id>/tags/<tag>

Remove a tag from a device.

device_id: The ID of the device.

tag: The tag to be removed.

Example

Remove the tag “testing” from a device:

curl -i 'http://localhost:7557/devices/202BC1-BM632w-000000/tags/testing' -X DELETE

PUT /presets/<preset_name>

Create or update a preset. Returns status code 200 if the preset has been
added/updated successfully. The body of the request is a JSON representation of
the preset. Refer to Presets section below for details about its format.

preset_name: The name of the preset.

Example

Create a preset to set 5 minutes inform interval for all devices tagged with
“test”:

query = {
 "weight": 0,
 "precondition": "{\"_tags\": \"test\"}"
 "configurations": [
 {
 "type": "value",
 "name": "InternetGatewayDevice.ManagementServer.PeriodicInformEnable",
 "value": "true"
 },
 {
 "type": "value",
 "name": "InternetGatewayDevice.ManagementServer.PeriodicInformInterval",
 "value": "300"
 }
]
}

curl -i 'http://localhost:7557/presets/inform' \
-X PUT \
--data '{"weight": 0, "precondition": "{\"_tags\": \"test\"}", "configurations": [{"type": "value", "name": "InternetGatewayDevice.ManagementServer.PeriodicInformEnable", "value": "true"}, {"type": "value", "name": "InternetGatewayDevice.ManagementServer.PeriodicInformInterval", "value": "300"}]}'

DELETE /presets/<preset_name>

curl -i 'http://localhost:7557/presets/inform' -X DELETE

PUT /files/<file_name>

Upload a new file or overwrite an existing one. Returns status code 200 if the
file has been added/updated successfully. The file content should be sent as
the request body.

file_name: The name of the uploaded file.

The following file metadata may be sent as request headers:

	fileType: For firmware images it should be “1 Firmware Upgrade Image”.
Other common types are “2 Web Content” and “3 Vendor Configuration File”.

	oui: The OUI of the device model that this file belongs to.

	productClass: The product class of the device.

	version: In case of firmware images, this refer to the firmware version.

Example

Upload a firmware image file:

curl -i 'http://localhost:7557/files/new_firmware_v1.0.bin' \
-X PUT \
--data-binary @"./new_firmware_v1.0.bin" \
--header "fileType: 1 Firmware Upgrade Image" \
--header "oui: 123456" \
--header "productClass: ABC" \
--header "version: 1.0"

DELETE /files/<file_name>

Delete a previously uploaded file:

curl -i 'http://localhost:7557/files/new_firmware_v1.0.bin' -X DELETE

GET /files/

Gets all previously uploaded files.

GET /files/?query={“filename”:”<filename>”}

Find files using a query.

Tasks

Find the different available tasks and their object structure.

getParameterValues

query = {
 "name": "getParameterValues",
 "parameterNames": [
 "InternetGatewayDevice.WANDevice.1.WANConnectionDevice.1.WANIPConnectionNumberOfEntries",
 "InternetGatewayDevice.Time.NTPServer1", "InternetGatewayDevice.Time.Status"
]
}

curl -i 'http://localhost:7557/devices/00236a-96318REF-SR360NA0A4%252D0003196/tasks?timeout=3000&connection_request' \
-X POST \
--data '{"name": "getParameterValues", "parameterNames": ["InternetGatewayDevice.WANDevice.1.WANConnectionDevice.1.WANIPConnectionNumberOfEntries", "InternetGatewayDevice.Time.NTPServer1", "InternetGatewayDevice.Time.Status"] }'

You may request a single or multiple parameters at once.

After the task has been executed successfully you can then fetch the CPE object
and read the parameters from the JSON object.

query = {"_id": "00236a-96318REF-SR360NA0A4%2D0003196"}

curl -i 'http://localhost:7557/devices/?query=%7B%22_id%22%3A%2200236a-96318REF-SR360NA0A4%252D0003196%22%7D'

refreshObject

curl -i 'http://localhost:7557/devices/00236a-SR552n-SR552NA084%252D0003269/tasks?timeout=3000&connection_request' \
-X POST \
--data '{"name": "refreshObject", "objectName": "InternetGatewayDevice.WANDevice.1.WANConnectionDevice"}'

setParameterValues

curl -i 'http://localhost:7557/devices/00236a-SR552n-SR552NA084%252D0003269/tasks?timeout=3000&connection_request' \
-X POST \
--data '{"name": "setParameterValues", "parameterValues": [["InternetGatewayDevice.ManagementServer.UpgradesManaged",false]]}'

Multiple values can be set at once by adding multiple arrays to the
parameterValues key. For example:

{
 name: "setParameterValues",
 parameterValues: [["InternetGatewayDevice.ManagementServer.UpgradesManaged", false], ["InternetGatewayDevice.Time.Enable", true], ["InternetGatewayDevice.Time.NTPServer1", "pool.ntp.org"]]
}

addObject

curl -i 'http://localhost:7557/devices/00236a-SR552n-SR552NA084%252D0003269/tasks?timeout=3000&connection_request' \
-X POST \
--data '{"name":"addObject","objectName":"InternetGatewayDevice.WANDevice.1.WANConnectionDevice.1.WANPPPConnection"}'

deleteObject

curl -i 'http://localhost:7557/devices/00236a-SR552n-SR552NA084%252D0003269/tasks?timeout=3000&connection_request' \
-X POST \
--data '{"name":"deleteObject","objectName":"InternetGatewayDevice.WANDevice.1.WANConnectionDevice.1.WANPPPConnection.1"}'

reboot

curl -i 'http://localhost:7557/devices/00236a-SR552n-SR552NA084%252D0003269/tasks?timeout=3000&connection_request' \
-X POST \
--data '{"name": "reboot"}'

factoryReset

curl -i 'http://localhost:7557/devices/00236a-SR552n-SR552NA084%252D0003269/tasks?timeout=3000&connection_request' \
-X POST \
--data '{"name": "factoryReset"}'

download

curl -i 'http://localhost:7557/devices/00236a-SR552n-SR552NA084%252D0003269/tasks?timeout=3000&connection_request' \
-X POST \
--data '{"name": "download", "file": "mipsbe-6-42-lite.xml"}'

Presets

Presets assign a set of configuration or a Provision script to devices based on
a precondition (search filter), schedule (cron expression), and events.

Precondition

The precondition property is a JSON string representation of the search
filter to test if the preset applies to a given device. Examples preconditions
are:

	{"param": "value"}

	{"param": value", "param2": {"$ne": "value2"}}

Other operators that can be used are $gt, $lt, $gte and $lte.

Configuration

The configuration property is an array containing the different configurations
to be applied to a device, as shown below:

[
 {
 "type": "value",
 "name": "InternetGatewayDevice.ManagementServer.PeriodicInformEnable",
 "value": "true"
 },
 {
 "type": "value",
 "name": "InternetGatewayDevice.ManagementServer.PeriodicInformInterval",
 "value": "300"
 },
 {
 "type": "delete_object",
 "name": "object_parent",
 "object": "object_name"
 },
 {
 "type": "add_object",
 "name": "object_parent",
 "object": "object_name"
 },
 {
 "type": "provision",
 "name": "YourProvisionName"
 },
]

The configuration type provision triggers a Provision script. In the
example above, the provision named “YourProvisionName” will be executed.

Provisions

Create a provision

The Provision’s JavaScript code is the body of the HTTP PUT request.

curl -X PUT -i 'http://localhost:7557/provisions/mynewprovision' --data 'log("Provision started at " + now);'

Delete a provision

curl -X DELETE -i 'http://localhost:7557/provisions/mynewprovision'

Get provisions

Get all provisions:

curl -X GET -i 'http://localhost:7557/provisions/'

HTTPS

TODO

CPE Authentication

CPE to ACS

Note

By default GenieACS will accept any incoming connection via HTTP/HTTPS and
respond to it.

The following parameters are used to set and get (password is redacted but
can be set) the username/password used to authenticate against the ACS:

Username: Device.ManagementServer.Username or InternetGatewayDevice.ManagementServer.Username

Password: Device.ManagementServer.Password or InternetGatewayDevice.ManagementServer.Password

Enable CPE to ACS Authentication

CPE to ACS authentication can be configured in the web interface by using the
Config option in the Admin tab.

Go to the Admin -> Config page and click on New config button at the
bottom of the page. This will open pop-up which requires you to fill in a key
and value. The key should be cwmp.auth. The value accepts a boolean.
Setting the value to true makes it so that GenieACS accepts any incoming
connection, setting it to false makes GenieACS deny all incoming
connections. This can be further configured using the AUTH() and EXT()
functions.

The AUTH() function

The AUTH() function accepts two parameters, username and password. It
checks the given username and password with the incoming request to determine
whether to return true or false.

Basic usage of the AUTH() function could be as follows:

AUTH("fixed-username", "fixed-password")

This will only accept incoming request who authenticate with
“fixed-username” and “fixed-password”.

The various device parameters can be referenced from within the cwmp.auth
expression. For example:

AUTH(Device.ManagementServer.Username, Device.ManagementServer.Password)

The EXT() function

The EXT() function makes it possible to call an extension script from the auth expression. This can be used to fetch
the credentials from an external source:

AUTH(DeviceID.SerialNumber, EXT("authenticate", "getPassword", DeviceID.SerialNumber))

ACS to CPE

TODO

Roles and Permissions

TODO

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to GenieACS’s documentation!

 		
 Installation Guide

 		
 Prerequisites

 		
 Install GenieACS

 		
 Configure systemd

 		
 Environment Variables

 		
 Provisions

 		
 Built-in functions

 		
 declare(path, timestamps, values)

 		
 clear(path, timestamp)

 		
 commit()

 		
 ext(file, function, arg1, arg2, ...)

 		
 log(message)

 		
 Path format

 		
 Creating/deleting object instances

 		
 Special GenieACS parameters

 		
 DeviceID

 		
 Tags

 		
 Reboot

 		
 FactoryReset

 		
 Downloads

 		
 Virtual Parameters

 		
 Examples

 		
 Unified MAC parameter across different device models

 		
 Expose an external value as a virtual parameter

 		
 Create an editable virtual parameter for WPA passphrase

 		
 Administration FAQ

 		
 Duplicate log entries when using log() function

 		
 Configurations not pushed to device after factory reset

 		
 Most device parameters are missing

 		
 Extensions

 		
 API Reference

 		
 Endpoints

 		
 GET /<collection>/?query=<query>

 		
 POST /devices/<device_id>/tasks?[connection_request]

 		
 POST /tasks/<task_id>/retry

 		
 DELETE /tasks/<task_id>

 		
 DELETE /faults/<fault_id>

 		
 DELETE /devices/<device_id>

 		
 POST /devices/<device_id>/tags/<tag>

 		
 DELETE /devices/<device_id>/tags/<tag>

 		
 PUT /presets/<preset_name>

 		
 DELETE /presets/<preset_name>

 		
 PUT /files/<file_name>

 		
 DELETE /files/<file_name>

 		
 GET /files/

 		
 GET /files/?query={“filename”:”<filename>”}

 		
 Tasks

 		
 getParameterValues

 		
 refreshObject

 		
 setParameterValues

 		
 addObject

 		
 deleteObject

 		
 reboot

 		
 factoryReset

 		
 download

 		
 Presets

 		
 Precondition

 		
 Configuration

 		
 Provisions

 		
 Create a provision

 		
 Delete a provision

 		
 Get provisions

 		
 HTTPS

 		
 CPE Authentication

 		
 CPE to ACS

 		
 Enable CPE to ACS Authentication

 		
 The AUTH() function

 		
 The EXT() function

 		
 ACS to CPE

 		
 Roles and Permissions

_static/minus.png

_static/plus.png

_static/file.png

